when i am learning differentiation, my lectuer tell us that the deriative $dy\over dx$ is one things, it is not the ration between dy and dx. However when i learn
about integrating, sometime we need to do substitution, like integrating $\int_{0}^{1}2xdx$ when substituting $y=2x$, we can substitute $dy=2dx$, but why in this case it can be treated as 2 different terms instead of 1 term??
Tuesday, 30 April 2019
calculus - $dyover dx$ is one things but why in integration we can treat it as 2 different terms
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment