Tuesday, 30 April 2019

calculus - How to prove $f(x)$ is integrable function on $[0,2]$



Let



$$ f(x) = \begin{cases}
1, & 0 \le x < 1 \\
0, & x=1 \\
1, & 1
\end{cases}$$



How Prove that $f(x)$ integrable on $[0,2]$



I know that $f(x)$ defined and Bounded on [a,b] then $f(x)$ integrable



$iff$



$\forall ϵ>0$ there is Partition $P$ so that




$$U(f;P)-L(f;P)<ϵ$$



how can i prove that?



thanks


Answer



Notice that on any interval $(a,b)\subset [0,2]$ we have that $\max_{x\in (a,b)}{f(x)}=1$ and $$\min_{x\in (a,b)}f(x)=\begin{cases}
0 & \mbox{ if } 1\in (a,b),\\
1 & \mbox{ otherwise.}
\end{cases}$$




Let $n\in \mathbb{N}$ and let $P=(P_i)_{i\in I}$ be any partition such that $P_j=(1-\frac{1}{n},1+\frac{1}{n})$ for some $j$. Clearly $U(f;P)=2$. Notice that $L(f;P)=2-\frac{2}{n}$. Since $n$ was chosen arbitrarily, we can get $U(f;P)-L(f;P)$ as small as we want.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...