Sunday, 28 April 2019

Prove proposition on real numbers and uniqueness.

How would I go about proving the following proposition. Do I have to prove uniqueness, or that if $x^2 = r$, then $x = \sqrt r$?




Prove given any $r \in \mathbb R\gt 0$, the number $\sqrt r$ is unique in the sense that, if $x$ is a positive real number such that $x^2 = r$, then $ x = \sqrt r$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...