Sunday 28 April 2019

complex analysis - Contour integration for the improper integral



How to integrate
$\Large \int_{-\infty}^{\infty}\frac{x \sin (7x)}{(x^2-6x+18)} dx$ with contours?




So far I have
$\Large \int_{C}^{}\frac{ze^{7iz}}{(z-(3+3i)) (z-(3-3i))} dz$



With the $$ \large {Res}[f(z),3+3i] = \lim_{z\to3} \ (z-(3+3i))\frac{ze^{7iz}}{(z-(3+3i)) (z-(3-3i))} = \frac{(3+3i)e^{7i(3+3i)}}{(3+3i)-(3-3i))} = \frac{(3+3i)e^{(21i-21)}}{6i}$$



and $$ \large {Res}[f(z),3-3i] = \lim_{z\to3} \ (z-(3-3i))\frac{ze^{7iz}}{(z-(3+3i)) (z-(3-3i))} = \frac{(3-3i)e^{7i(3-3i)}}{((3-3i)-(3+3i))} = \frac{(3-3i)e^{(21i+21)}}{-6i}$$



$$$$



For the upper half plane $$\large 2\pi i{Res}[f(z),3+3i] = \pi \frac{(3+3i)e^{(21i-21)}}{3} = \pi(1+i)e^{(21i-21)}$$




and for the upper lower half plane and $$\large -2\pi i{Res}[f(z),3-3i] = \pi \frac{(3-3i)e^{(21i+21)}}{3} = \pi(1-i)e^{(21i+21)}$$



so
$$ \int_{-\infty}^{\infty}\frac{x \cos (7x)}{(x^2-6x+18)} dx + i\int_{-\infty}^{\infty}\frac{x \sin (7x)}{(x^2-6x+18)} dx + \int_{C}^{}\frac{ze^{7iz}}{(z-(3+3i)) (z-(3-3i))} dz = \pi(1+i)e^{(21i-21)} + \pi(1-i)e^{(21i+21)}$$



and equating the imaginary parts



$$\int_{-\infty}^{\infty}\frac{x \sin (7x)}{(x^2-6x+18)} dx = i\pi(e^{21i-21} - e^{21i+21})$$


Answer




When transforming to the $z$ plane we have



$$\sin 7x \to \sin 7z \ne e^{i7z}$$



However,



$$\sin z =\text{Im}\{e^{i7z}\}$$



so that $\int_{-\infty}^{\infty}\frac{x \sin (7x)}{(x^2-6x+18)} dx$ becomes




$$\text{Im}\left(\oint_C \frac{z e^{i7z}}{z^2-6z+18}dz\right)$$



where the contour $C$ is composed of the real axis plus the "infinite semi-circle" that encloses the upper half plane. You use Jordan's lemma to show that the integration over the semi-circle does not contribute to the closed-contour integration. Then, the integral of interest is equal to $2\pi i$ times the imaginary part of the residue of



$$\frac{z e^{i7z}}{z^2-6z+18}$$



in the upper-half plane. Thus,



$$\int_{-\infty}^{\infty}\frac{x \sin (7x)}{(x^2-6x+18)} dx=\text{Im}\left(2\pi i \text{Res}\left( \frac{z e^{i7z}}{z^2-6z+18}\right) \right)$$




Working out the details, the integral is



$$\sqrt{2}\pi e^{-21}\sin(21+\pi/4)$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...