I'm trying to show that
$$\lim_{n \to \infty} \left[\sum_{k=1}^{n} \frac{1}{k} - \log n\right] = -\int_0^{\infty} e^{-t} \log t \,dt.$$
In other words, I'm trying to show that the above definitions of the Euler-Mascheroni constant $\gamma$ are equivalent.
In another post here (which I can't seem to find now) someone noted that
$$\int_0^{\infty} e^{-t} \log t \,dt = \left.\frac{d}{dx} \int_0^{\infty} t^x e^{-t} \,dt \right|_{x=0} = \Gamma'(1) = \psi(1),$$
where $\psi$ is the digamma function. This may be a good place to start on the right-hand side.
For the left-hand side I was tempted to represent the terms with integrals. It is not hard to show that
$$\sum_{k=1}^{n} \frac{1}{k} = \int_0^1 \frac{1-x^n}{1-x} \,dx,$$
but I'm not sure this gets us anywhere.
Any help would be greatly appreciated.
Answer
It is easy to prove that the function
$$ f_n(x) = \begin{cases} \left( 1 - \frac{x}{n}\right)^n & 0 \leq x \leq n \\ 0 & x > n \end{cases}$$
satisfies $0 \leq f_n(x) \uparrow e^{-x}$. Thus by dominated convergence theorem,
$$ \int_{0}^{\infty} e^{-x} \log x \; dx = \lim_{n\to\infty} \int_{0}^{n} \left( 1 - \frac{x}{n}\right)^n \log x \; dx. $$
Now by the substitution $x = nu$, we have
$$\begin{align*}
\int_{0}^{n} \left( 1 - \frac{x}{n}\right)^n \log x \; dx
&= n\int_{0}^{1} \left( 1 - u\right)^n (\log n + \log u) \; du \\
&= \frac{n}{n+1}\log n + n\int_{0}^{1} \left( 1 - u\right)^n \log u \; du \\
&= \frac{n}{n+1}\log n + n\int_{0}^{1} v^n \log (1-v) \; dv \\
&= \frac{n}{n+1}\log n - n\int_{0}^{1} v^n \left( \sum_{k=1}^{\infty} \frac{v^k}{k} \right) \; dv \\
&= \frac{n}{n+1}\log n - n \sum_{k=1}^{\infty} \frac{1}{k(n+k+1)} \\
&= \frac{n}{n+1}\log n - \frac{n}{n+1} \sum_{k=1}^{\infty} \left( \frac{1}{k} - \frac{1}{n+k+1}\right) \\
&= \frac{n}{n+1} \left( \log n - \sum_{k=1}^{n+1} \frac{1}{k} \right).
\end{align*}$$
Therefore taking $n \to \infty$ yields $-\gamma$. If you are not comfortable with the interchange of integral and summation, you may perform integration by parts as follows:
$$ \begin{align*}
\int_{0}^{1} v^n \log (1-v) \; dv
&= \left. \frac{v^{n+1} - 1}{n+1} \log (1-v) \right|_{0}^{1} - \int_{0}^{1} \frac{v^{n+1} - 1}{n+1} \cdot \frac{1}{v - 1} \; dv \\
&= - \frac{1}{n+1} \int_{0}^{1} \frac{1 - v^{n+1}}{1 - v} \; dv
\end{align*}$$
No comments:
Post a Comment