I have a question about the following matrix:
[123123123]
Find the eigenvalues without calculations and define your answer. Now, I was thinking about this problem. And I thought, yeah ok if you try the vector (1,1,1), you can find 6 as one eigenvalue (and I know you have a double multiplicity 0 too). But than you are doing sort of guessing/calculation work.
I see that the columns are linearly dependant. So I know the dimension of the column space and of the null space.
Thank you in advance.
EDIT: follow up question:
Ok, so you find that the dimension of the null space is 2, so there are 2 eigenvectors when the eigenvalue is 0. Now my question is, can the dimension of the eigenspace be bigger than the amount of eigenvalues? I guess not. I know it can be smaller
Answer
Notice that rank=1 and hence 0 is an eigenvalue of multiplicity 2.
Then trace=sum of eigenvalue and hence the last eigenvalue is 6.
It is also rather easy to find all eigenvectors without a lot of work. For 6 the vector is (1,1,1). For 0 you can take basis (2,−1,0),(3,0,−1).
No comments:
Post a Comment