Thursday, 4 April 2019

calculus - What is $limlimits_{n rightarrow infty} frac{sqrt{n+1} + 3}{sqrt{n+2} - 4}$?




$$\begin{equation*}
\lim_{n \rightarrow \infty}
\frac{\sqrt{n+1} + 3}{\sqrt{n+2} - 4}
\end{equation*}$$



I know that I should multiply by the conjugate if I have square roots in either the numerator or the denominator but what if I have square roots in both numerator and denominator?



Could anyone help me please?


Answer



HINT




By intuition we have that the $\sqrt n$ terms are dominant on the others and therefore in the limit



$$\frac{\sqrt{(n+1)}+ 3}{\sqrt{(n+2)} - 4}\sim \frac{\sqrt n}{\sqrt n}=1$$



To check and formalize rigoursly this fact let consider



$$\frac{\sqrt{(n+1)}+ 3}{\sqrt{(n+2)} - 4}=\frac{\sqrt n}{\sqrt n}\frac{\sqrt{(1+1/n)}+ 3/\sqrt n}{\sqrt{(1+2/n)} - 4/\sqrt n}$$



then take the limit.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...