How to compute
limn→+∞n−12(1+1n)(11⋅22⋅33⋯nn)1n2
I'm interested in more ways of computing limit for this expression
My proof:
Let u_nbe that sequence we've:
\begin{eqnarray*} \ln u_n &=& -\frac{n+1}{2n}\ln n + \frac{1}{n^2}\sum_{k=1}^n k\ln k\\ &=& -\frac{n+1}{2n}\ln n + \frac{1}{n^2}\sum_{k=1}^n k\ln \frac{k}{n}+\frac{1}{n^2}\sum_{k=1}^n k\ln n\\ &=& \frac{1}{n^2}\sum_{k=1}^n k\ln \frac{k}{n}\\ &=& \frac{1}{n}\sum_{k=1}^n \frac{k}{n}\ln \frac{k}{n}\\ &\to&\int_0^1 x\ln x\,dx = -1/4 \end{eqnarray*}
Therefore the limit is e^{-\frac{1}{4}}
No comments:
Post a Comment