Friday, 6 June 2014

real analysis - If$f^{-1}(x)=kx-f(x)$, then what can we say about $f$?

If $f^{-1}(x)=kx-f(x)\forall x\in\mathbb{R}$ for a strictly increasing $f$ and $k$ a constant, then what can be said about $f$?



I think the answer is of the form $f(x)=x+c$, for some $c\in\mathbb{R}$. Any hints. Thanks beforehand

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...