Sunday, 8 June 2014

sequences and series - Proof by Induction $sum_{i=0}^{k-1} 2^i = 2^k-1$





Prove mathematical induction $$\sum_{i=0}^{k-1} 2^i = 2^k-1$$


Answer



Assuming you mean $2^k-1$ then



base case $k=1$ then



$$\sum_{i=0}^{1-1}2^i = 1 = 2^1 -1$$



Now
$$\begin{align}\sum_{i=0}^{k}2^i & = \sum_{i=0}^{k-1}2^i +2^k \\[0.5ex] & = 2^k -1 + 2^k & \textsf{assuming }\sum_{i=1}^{k-1} = 2^k-1 \\[0.5ex] & = 2^12^k-1 \\[0.5ex] & =2^{k+1}-1 \end{align}$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...