Saturday, 6 December 2014

trigonometry - If the sides $a$, $b$ and $c$ of $triangle ABC$ are in Arithmetic Progression

If the sides $a$, $b$ and $c$ of $\triangle ABC$ are in Arithmetic Progression, then prove that:
$$\cos (\dfrac {B-C}{2})=2\sin (\dfrac {A}{2})$$



My Attempt:



Since, $a,b,c$ are in AP
$$2b=a+c$$
$$\sin A+\sin C=2\sin B$$

$$2\sin (\dfrac {A+C}{2}).\cos (\dfrac {A-C}{2})=2\sin B$$
$$\sin (\dfrac {A+C}{2}).\cos (\dfrac {A-C}{2})=\sin B$$
$$\sin (\dfrac {A+C}{2}).\cos (\dfrac {A-C}{2})=2.\sin (\dfrac {A+C}{2}).\cos (\dfrac {A+C}{2})$$
$$2\cos (\dfrac {A+C}{2})=\cos (\dfrac {A-C}{2})$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...