I was thinking on the following line of thoughts:
$1 = \sqrt{1} = \sqrt{-1 \cdot -1} = \sqrt{-1} \cdot \sqrt{-1} = i^2 = -1$
Of course this is not true, but I was wondering which step in this 'line of thoughts' is forbidden to make?
Thanks for the explanation.
Answer
$\sqrt{-1 \cdot -1}$ is not equal to $\sqrt{-1} \cdot \sqrt{-1}$. The formula $\sqrt{ab} = \sqrt{a}\sqrt{b}$ is only valid when both $a,b$ are nonnegative real numbers.
No comments:
Post a Comment