Tuesday, 7 July 2015

calculus - Evaluate the integral $int_0^{infty} lfloor x rfloor e^{-x}mathrm dx$



I'd like some help with the following integral:




$$\int_0^\infty \lfloor x \rfloor e^{-x}\mathrm dx .$$



Thanks.


Answer



This reduces to a series $\displaystyle \sum_{n=0}^{\infty} \int_n^{n+1}\!\! n e^{-x}\;dx$. The integrals are easy to evaluate and so is the series.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...