Tuesday, 25 August 2015

calculus - Finding the limit of $frac{Q(n)}{P(n)}$ where $Q,P$ are polynomials



Suppose that $$Q(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0} $$and $$P(x)=b_{m}x^{m}+b_{m-1}x^{m-1}+\cdots+b_{1}x+b_{0}.$$ How do I find $$\lim_{x\rightarrow\infty}\frac{Q(x)}{P(x)}$$ and what does the sequence $$\frac{Q(k)}{P(k)}$$ converge to?



For example, how would I find what the sequence $$\frac{8k^2+2k-100}{3k^2+2k+1}$$ converges to? Or what is $$\lim_{x\rightarrow\infty}\frac{3x+5}{-2x+9}?$$



This is being asked in an effort to cut down on duplicates, see here: Coping with abstract duplicate questions.



and here: List of abstract duplicates.



Answer



Short Answer:



The sequence $\displaystyle\frac{Q(k)}{P(k)}$ will converge to the same limit as the function $\displaystyle\frac{Q(x)}{P(x)}.$ There are three cases:



$(i)$ If $n>m$ then it diverges to either $\infty$ or $-\infty$ depending on the sign of $\frac{a_{n}}{b_{m}}$.



$(ii)$ If $n

$(iii)$ If $n=m$ then it converges to $\frac{a_{n}}{b_{n}}$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...