Sunday, 30 August 2015

calculus - Finding value of given integral



Find the value of the following integral. $$\int_{1/e}^{\tan x} \cfrac{tdt}{1+t^2} + \int_{1/e}^{\cot x} \cfrac{dt}{1+t^2}$$



As a start, I've done this -



$$\int_{1/e}^{\tan x} \cfrac{tdt}{1+t^2} - \int_{\cot x}^{1/e} \cfrac{dt}{1+t^2} \\
=\int_{\cot x}^{\tan x} \cfrac{t-1}{1+t^2} dt $$




Is this valid? If yes, then how to proceed?


Answer



$$\int_{1/e}^{\tan x} \cfrac{tdt}{1+t^2} + \int_{1/e}^{\cot x} \cfrac{dt}{1+t^2}$$



For the first integral, substitute $1+t^2=s\implies tdt= \dfrac {ds}2$. Also, we know that $\int\frac 1{1+t^2} dt =\arctan t +c$. We thus get: $$\int_{1/e}^{\tan x} \dfrac{ds}{2s} + \arctan (\cot x)-\arctan\left (\dfrac 1e\right )$$ $$=\dfrac 12(\ln \tan x +1)+\arctan (\cot x)-\arctan\left (\dfrac 1e\right )$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...