Find the value of the following integral. ∫tanx1/etdt1+t2+∫cotx1/edt1+t2
As a start, I've done this -
∫tanx1/etdt1+t2−∫1/ecotxdt1+t2=∫tanxcotxt−11+t2dt
Is this valid? If yes, then how to proceed?
Answer
∫tanx1/etdt1+t2+∫cotx1/edt1+t2
For the first integral, substitute 1+t2=s⟹tdt=ds2. Also, we know that ∫11+t2dt=arctant+c. We thus get: ∫tanx1/eds2s+arctan(cotx)−arctan(1e) =12(lntanx+1)+arctan(cotx)−arctan(1e)
No comments:
Post a Comment