Sunday, 30 August 2015

elementary number theory - If $d$ divides $k$ and $d$ divides $n$, then $d$ divides $(8k - 3n)$

Suppose that $k$, $n$, and $d$ are integers and $d$ is not $0$. Prove: If $d$ divides $k$ and $d$ divides $n$, then $d$ divides $(8k - 3n)$. You may not use the theorem stating the following:



Let $m$, $n$, and $d$ be integers.



(a) If $d\mid m$ and $d\mid n$, then $d\mid (m + n)$.



(b) If $d\mid m$ and $d\mid n$, then $d\mid (m - n)$.




(c) If $d\mid m$, then $d\mid mn$.



I am not sure what the basis step is with this proof. Thank you for any help.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...