Saturday, 29 August 2015

real analysis - The $ l^{infty} $-norm is equal to the limit of the $ l^{p} $-norms.





If we are in a sequence space, then the $ l^{p} $-norm of the sequence $ \mathbf{x} = (x_{i})_{i \in \mathbb{N}} $ is $ \displaystyle \left( \sum_{i=1}^{\infty} |x_{i}|^{p} \right)^{1/p} $.



The $ l^{\infty} $-norm of $ \mathbf{x} $ is $ \displaystyle \sup_{i \in \mathbb{N}} |x_{i}| $.



Prove that the limit of the $ l^{p} $-norms is the $ l^{\infty} $-norm.




I saw an answer for $ L^{p} $-spaces, but I need one for $ l^{p} $-spaces. Besides, I didn’t really understand the $ L^{p} $-answer either.



Thanks for your help!


Answer



Let me state the result properly:




Let $x=(x_n)_{n \in \mathbb{N}} \in \ell^q$ for some $q \geq 1$. Then $$\|x\|_{\infty} = \lim_{p \to \infty} \|x\|_p. \tag{1}$$





Note that $(1)$ fails, in general, not hold if $x=(x_n)_{n \in \mathbb{N}} \notin \ell^q$ for all $q \geq 1$ (consider for instance $x_n := 1$ for all $n \in \mathbb{N}$.)



Proof of the result: Since $$|x_k| \leq \left(\sum_{j=1}^{\infty} |x_j|^p \right)^{\frac{1}{p}}=\|x\|_p$$ for all $k \in \mathbb{N}$, $p \geq 1$, we have $\|x\|_{\infty} \leq \|x\|_p$. Thus, in particular $$\|x\|_{\infty} \leq \liminf_{p \to \infty} \|x\|_p. \tag{1}$$



On the other hand, we know that $$\|x\|_p = \left( \sum_{j=1}^{\infty} |x_j|^{p-q} \cdot |x_j|^q \right)^{\frac{1}{p}} \leq \|x\|_{\infty}^{\frac{p-q}{p}} \cdot \left( \sum_{j=1}^{\infty} |x_j|^q \right)^{\frac{1}{p}} = \|x\|_{\infty}^{1-\frac{q}{p}} \cdot \|x\|_q^{\frac{q}{p}}$$ for all $q

$$ \limsup_{p \to \infty} \|x\|_p \leq \limsup_{p \to \infty} \left( \|x\|_{\infty}^{1-\frac{q}{p}} \cdot \|x\|_q^{\frac{q}{p}}\right) = \|x\|_{\infty} \cdot 1. \tag{2}$$



Hence, $$\limsup_{p \to \infty} \|x\|_p \leq \|x\|_{\infty} \leq \liminf_{p \to \infty} \|x\|_p.$$ This shows that $\lim_{p \to \infty} \|x\|_p$ exists and equals $\|x\|_{\infty}$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...