Saturday, 29 August 2015

real analysis - The linfty-norm is equal to the limit of the lp-norms.





If we are in a sequence space, then the lp-norm of the sequence x=(xi)iN is (i=1|xi|p)1/p.



The l-norm of x is sup.



Prove that the limit of the l^{p} -norms is the l^{\infty} -norm.




I saw an answer for L^{p} -spaces, but I need one for l^{p} -spaces. Besides, I didn’t really understand the L^{p} -answer either.



Thanks for your help!


Answer



Let me state the result properly:




Let x=(x_n)_{n \in \mathbb{N}} \in \ell^q for some q \geq 1. Then \|x\|_{\infty} = \lim_{p \to \infty} \|x\|_p. \tag{1}





Note that (1) fails, in general, not hold if x=(x_n)_{n \in \mathbb{N}} \notin \ell^q for all q \geq 1 (consider for instance x_n := 1 for all n \in \mathbb{N}.)



Proof of the result: Since |x_k| \leq \left(\sum_{j=1}^{\infty} |x_j|^p \right)^{\frac{1}{p}}=\|x\|_p for all k \in \mathbb{N}, p \geq 1, we have \|x\|_{\infty} \leq \|x\|_p. Thus, in particular \|x\|_{\infty} \leq \liminf_{p \to \infty} \|x\|_p. \tag{1}



On the other hand, we know that \|x\|_p = \left( \sum_{j=1}^{\infty} |x_j|^{p-q} \cdot |x_j|^q \right)^{\frac{1}{p}} \leq \|x\|_{\infty}^{\frac{p-q}{p}} \cdot \left( \sum_{j=1}^{\infty} |x_j|^q \right)^{\frac{1}{p}} = \|x\|_{\infty}^{1-\frac{q}{p}} \cdot \|x\|_q^{\frac{q}{p}} for all $q

\limsup_{p \to \infty} \|x\|_p \leq \limsup_{p \to \infty} \left( \|x\|_{\infty}^{1-\frac{q}{p}} \cdot \|x\|_q^{\frac{q}{p}}\right) = \|x\|_{\infty} \cdot 1. \tag{2}



Hence, \limsup_{p \to \infty} \|x\|_p \leq \|x\|_{\infty} \leq \liminf_{p \to \infty} \|x\|_p. This shows that \lim_{p \to \infty} \|x\|_p exists and equals \|x\|_{\infty}.



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...