Friday, 14 August 2015

calculus - Limit of $lim_{nrightarrow infty} sum^{n}_{i=1} frac{1}{sqrt {n^2 +i} }$




Direct way leads to nowhere.



$$\lim_{n\rightarrow \infty} \sum^{n}_{i=1} \frac{1}{\sqrt {n^2 +i} } = \lim_{n\rightarrow \infty} \sum^{n}_{i=1} \frac{1}{n \sqrt {1 +\frac{i}{n^2}} } = $$



$$ = \lim_{n\rightarrow \infty} \frac{1}{n} \cdot \lim_{n\rightarrow \infty} \sum^{n}_{i=1} \frac{1}{\sqrt {1 +\frac{i}{n^2}} } = 0 \cdot \sum^{n}_{i=1} 1 = 0 \cdot n $$



So, I tried to apply squeeze theorem:



$$\lim_{n\rightarrow \infty} \sum^{n}_{i=1} \frac{1}{\sqrt {n^2 +i} } \leq \lim_{n\rightarrow \infty} \sum^{n}_{i=1} \frac{1}{n} = 1$$




Could you help me to figure out the lower bound?


Answer



Notice that $$\frac{n}{\sqrt{n^2+n}} =\sum_{i=1}^n \frac{1}{\sqrt{n^2+n}}\leq \sum_{i=1}^n\frac{1}{\sqrt{n^2+i}}\leq \sum_{i=1}^n \frac{1}{n} =1$$ Since $\frac{n}{\sqrt{n^2+n}}=\frac{1}{\sqrt{1+\frac{1}{n}}}\to 1$, you get that $1$ as your limit by squeeze theorem.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...