Thursday, 27 August 2015

real analysis - Use definition of limit to prove $lim_ {t to a} f(t^2) =L$



Suppose:





$$\lim_ {x \to a^2} f(x) =L $$



Use this to prove $\lim_{t \to a} f(t^2) =L$.




This is evident from the limit substitution rule, but in this course we have not covered this and we should use the formal definition of the limit. That is:



$$ \forall \epsilon>0 \quad \exists \delta \quad s.t. \quad |x-a^2|< \delta \implies |f(x)-L|< \epsilon$$




must be used to prove:



$$ \forall \epsilon>0 \quad \exists \delta \quad s.t. \quad |t-a|< \delta \implies |f(t^2)-L|< \epsilon$$



how do I make this connection.


Answer



$|t-a| <\delta'$ implies $|t^{2}-a^{2}|=|t-a||t+a| <\delta' (|t|+|a|)<\delta' (\delta'+2|a|)$. So choose $\delta'$ such that $\delta' (\delta'+2|a|) <\delta$. It is enough to take $\delta' <1$ and $\delta' <\frac {\delta} {1+2|a|}$. Then $|t-a| <\delta'$ implies $|f(t^{2})-L| <\epsilon$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...