Thursday, 27 August 2015

real analysis - Use definition of limit to prove limttoaf(t2)=L



Suppose:





limxa2f(x)=L



Use this to prove \lim_{t \to a} f(t^2) =L.




This is evident from the limit substitution rule, but in this course we have not covered this and we should use the formal definition of the limit. That is:



\forall \epsilon>0 \quad \exists \delta \quad s.t. \quad |x-a^2|< \delta \implies |f(x)-L|< \epsilon




must be used to prove:



\forall \epsilon>0 \quad \exists \delta \quad s.t. \quad |t-a|< \delta \implies |f(t^2)-L|< \epsilon



how do I make this connection.


Answer



|t-a| <\delta' implies |t^{2}-a^{2}|=|t-a||t+a| <\delta' (|t|+|a|)<\delta' (\delta'+2|a|). So choose \delta' such that \delta' (\delta'+2|a|) <\delta. It is enough to take \delta' <1 and \delta' <\frac {\delta} {1+2|a|}. Then |t-a| <\delta' implies |f(t^{2})-L| <\epsilon.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...