Thursday 27 August 2015

calculus - What is? $ lim_{x to infty} left(frac{e}{left( 1 + frac {1}{x} right)^x} right)^x $





Find $$ \lim_{x \to \infty} \left( \dfrac{e}{\left( \left( 1 + \frac {1}{x} \right)^x \right)} \right)^x. $$







$ \lim_{x \to \infty} \left( \dfrac{e}{\left( \left( 1 + \frac {1}{x} \right)^x \right)} \right)^x = \lim_{x \to \infty} \left( \dfrac {e}{e} \right)^x = \lim_{x \to \infty} 1^x = \infty $



Why is this incorrect?


Answer



Take the logarithm,




$$\begin{align}
\log \left(\frac{e}{\left(1+\frac1x\right)^x}\right)^x &= x\log \frac{e}{\left(1+\frac1x\right)^x}\\
&= x\left(1 - x \log \left(1+\frac1x\right)\right)\\
&= x\left(1 - x\left(\frac1x - \frac{1}{2x^2} + O(x^{-3})\right) \right)\\
&= x\left(1 - 1 + \frac{1}{2x} + O(x^{-2})\right)\\
&= \frac12 + O(x^{-1}).
\end{align}$$



And hence




$$\lim_{x\to\infty} \left(\frac{e}{\left(1+\frac1x\right)^x}\right)^x = e^{1/2}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...