Monday, 14 December 2015

For what values alpha for complex z ln(zalpha)=alphaln(z)?




For example, when α=2, ln(z2)2ln(z), because argument z is determined up to constant 2πk. So



ln(z2)=ln(z)+ln(z)=ln(zk1)+ln(zk2)2ln(zk3).



Of course, two of correct answers - 1,1. But I know, that there are an infinite number of answers for α. Can you help me?


Answer



Using this and this,




Log(a+ib)x+iy
=12xlog(a2+b2)y(2mπ+tan1ba)+i(12ylog(a2+b2)+x(2mπ+tan1ba))



Log(a+ib)=12log(a2+b2)+i(2nπ+tan1ba)



(x+iy)Log(a+ib)
=12xlog(a2+b2)y(2nπ+tan1ba)+i(x(2nπ+tan1ba)+12ylog(a2+b2))



The principal values will be same if π<12ylog(a2+b2)+xtan1baπ else 2rπ (where r is any integer) must be added to this argument to adjust its value in (π,π].




If x=0 or (b=0 and a>0tan1ba=0) , the condition becomes π<12ylog(a2+b2)π



If y=0 or a2+b2=1log(a2+b2)=0, the condition becomes $-\pi

If y=0 or a2+b2=1 and x=1 the condition becomes π<tan1baππ>tan1batan1ba which is true for all a,b.



If y=0,x=2 the condition becomes π<2tan1baπ



π2<tan1baπ2 i.e, a>0.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...