For example, when α=2, ln(z2)≠2ln(z), because argument z is determined up to constant 2πk. So
ln(z2)=ln(z)+ln(z)=ln(zk1)+ln(zk2)≠2ln(zk3).
Of course, two of correct answers - 1,−1. But I know, that there are an infinite number of answers for α. Can you help me?
Answer
Log(a+ib)x+iy
=12xlog(a2+b2)−y(2mπ+tan−1ba)+i(12ylog(a2+b2)+x(2mπ+tan−1ba))
Log(a+ib)=12log(a2+b2)+i(2nπ+tan−1ba)
(x+iy)Log(a+ib)
=12xlog(a2+b2)−y(2nπ+tan−1ba)+i(x(2nπ+tan−1ba)+12ylog(a2+b2))
The principal values will be same if −π<12ylog(a2+b2)+xtan−1ba≤π else 2rπ (where r is any integer) must be added to this argument to adjust its value in (−π,π].
If x=0 or (b=0 and a>0⇔tan−1ba=0) , the condition becomes −π<12ylog(a2+b2)≤π
If y=0 or a2+b2=1⇔log(a2+b2)=0, the condition becomes $-\pi
If y=0 or a2+b2=1 and x=−1 the condition becomes −π<−tan−1ba≤π⟹π>tan−1ba≥−tan−1ba which is true for all a,b.
If y=0,x=2 the condition becomes −π<2tan−1ba≤π
⟹−π2<tan−1ba≤π2 i.e, a>0.
No comments:
Post a Comment