A strange coincidence which I discovered recently, is that
$$\int_{-\infty}^{\infty}{\tan^{-1}{\frac{1}{(x-\alpha)^2+\frac{3}{4}}}}dx = \sum_{x=-\infty}^{\infty}{\tan^{-1}{\frac{1}{(x-\alpha)^2+\frac{3}{4}}}}$$
Are there any other functions for which this characteristic holds true, and if so, what do they all have in common, and how can we determine them (if possible)?
Sunday, 13 December 2015
sequences and series - Identical Summation and Integration of specific functions
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment