Wednesday, 2 March 2016

calculus - Can be solved without L'Hopital?



Can this limit be evaluated without l'hopital's rule?



$$\lim_{h\to0}\frac{\sqrt[3]{8+h}-2}{h}$$


Answer



$$x^3-y^3=(x-y)(x^2+xy+y^2)\implies x-y=\frac{x^3-y^3}{x^2+xy+y2}$$



Now we put




$$x=\sqrt[3]{8+h}\;,\;\;y=2\implies \sqrt[3]{8+h}-2=\frac{8+h-8}{(8+y)^{2/3}+2\sqrt[3]{8+h}+4}\implies$$



$$\frac{\sqrt[3]{8+h}-2}h=\frac1{(8+h)^{2/3}+2\sqrt[3]{8+h}+4}\xrightarrow[h\to 0]{}\frac1{8^{2/3}+2\sqrt[3]8+4}=\ldots$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...