Can this limit be evaluated without l'hopital's rule?
limh→03√8+h−2h
Answer
x3−y3=(x−y)(x2+xy+y2)⟹x−y=x3−y3x2+xy+y2
Now we put
x=3√8+h,y=2⟹3√8+h−2=8+h−8(8+y)2/3+23√8+h+4⟹
3√8+h−2h=1(8+h)2/3+23√8+h+4→h→0182/3+23√8+4=…
How to find limh→0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment