$$\lim_\limits{n\to \infty}\frac{\sin\frac{1}{n}}{\frac{1}{n}}$$
How am I supposed to know this equals 1?
I could sub $x= \frac{1}{n}$ to get
$$\lim_\limits{x\to \infty}\frac{\sin(x)}{x} $$
Using L'Hopital's I'd get:
$$\lim_\limits{x\to \infty}\frac{\cos(x)}{1} $$
But, $\cos(x)$ just cycles between $-1$ and $1$, so how can the limit be $1$ ?
Answer
HINT:
If $x=\frac{1}{n}$, then as $n\to\infty$, $x\to 0^+$
So the limit becomes:
$$\lim_\limits{x\to 0^+}\frac{\sin x}{x}$$
No comments:
Post a Comment