Thursday, 10 March 2016

elementary number theory - Remainder division using total digit




Find the remainder of the division of 1112131 41516171819 by 99
. (b) Find the remainder 111213141516171819 by 101



For a) I think I just need to sum up two digit such as 135 mod 99 =36
b.) sum up three digit each such as
1971 mod 101 then can i sum 197+1 mod 101?




Is this right?


Answer



N=19+18×100+17×1002+16×1003+15×1004+14×1005+13×1006+12×1007+11×1008



a:1001 mod99100k1mod99



N(11+12+13+14+15+16+17+18+19)mod99135 mod9936 mod99



b:1001 mod1011002k[(1)2k=1] mod101; 1002k+1[(1)2k+1=1] mod101




N(1112+1314+1516+1718+19)mod10115 mod101


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...