There are examples showing that functions with almost everywhere 0 derivative can be increasing. However in those examples, functions are not differentiable everywhere. In fact, invoking theorem 7.21 from Rudin's Real and Complex Analysis, I can deduce that if a function $f$ is differentiable everywhere and its derivative equals $0$ a.e., then $f\equiv constant$. However, I'm wondering if there is some easier proof of such statement, since the proof of theorem 7.21 is quite weird to me. Is there any other theory that I can use to prove the statement?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment