Thursday, 10 March 2016

Sum of n terms of the series $frac{1}{1 cdot 3}+frac{2}{1 cdot 3 cdot5}+frac{3}{1 cdot 3 cdot 5 cdot 7}+cdots$




I need to find the sum of n terms of the series



$$\frac{1}{1\cdot3}+\frac{2}{1\cdot 3\cdot 5}+\frac{3}{1\cdot 3\cdot 5\cdot 7}+\cdots$$



And I've no idea how to move on. It doesn't look like an arithmetic progression or a geometric progression. As far as I can tell it's not telescoping. What do I do?


Answer



It is telescoping. Consider that:
$$ \frac{1}{1\cdot 3} = \frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right),\quad \frac{2}{1\cdot 3\cdot 5} = \frac{1}{2}\left(\frac{1}{1\cdot 3}-\frac{1}{3\cdot 5}\right), $$
$$ \frac{3}{1\cdot 3\cdot 5\cdot 7}=\frac{1}{2}\left(\frac{1}{1\cdot 3\cdot 5}-\frac{1}{3\cdot 5\cdot 7}\right),\quad \ldots$$

so:
$$ \sum_{k=1}^{n}\frac{k}{(2k+1)!!} = \frac{1}{2}\left(1-\frac{1}{(2n+1)!!}\right). $$
As usual, $(2k+1)!!$ stands for $1\cdot 3\cdot 5\cdot\ldots\cdot (2k+1)$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...