A. lim given that \lim_{n\to\infty}a_n=0 and \lim_{n\to\infty}b_n=\infty
B. \lim_{n\to\infty}{a_n \over b_n}=? given that \lim_{n\to\infty}a_n=0 and \lim_{n\to\infty}b_n=0
C. \lim_{n\to\infty}{a_n \over b_n}=? given that \lim_{n\to\infty}a_n=\infty and \lim_{n\to\infty}b_n= \infty
These seem to be difficult situations I come across when I have to evaluate limits.
Some examples,
- \lim_{n\to\infty}n^a\sin(1/n^b) with a,b>1
- \lim_{n\to\infty}{n^a\over \sin(1/n^b)} with a,b>1
- \lim_{n\to\infty}{1/n^a\over \sin(1/n^b)} with a,b>1
- \lim_{n\to\infty} nf(x_n) [where we only know that \lim \ f(x_n) = 0]
My first question is : Are the two situations A and B equivalent ? I feel that they are equivalent as \lim_{n\to\infty}b_n=\infty \iff \lim_{n\to\infty}{1\over b_n}=0, The problem is that I'm not sure if we can apply the product rule for limits to take the limit inside.
My second question is : What are some ways to solve such problems ? I only know that we can apply stolz- cesaro in some cases.
Answer
These are usually called indeterminate forms, not because we can't compute the limit, but because no general theorem exists.
Just to make a couple of easy examples for your fourth question.
Consider b_n=\frac{1}{n}. Then
\lim_{n\to\infty} b_n=0
and
\lim_{n\to\infty} nb_n=\lim_{n\to\infty}n\frac{1}{n}=1
If we take instead c_n=\frac{1}{n^2} we have
\lim_{n\to\infty} c_n=0,\qquad \lim_{n\to\infty} nc_n=\lim_{n\to\infty}\frac{1}{n}=0
With d_n=\frac{1}{\sqrt{n}} we have
\lim_{n\to\infty} d_n=0,\qquad \lim_{n\to\infty} nd_n=\lim_{n\to\infty}\sqrt{n}=\infty
So no general rule can be given.
You may want to check that
$$
\lim_{n\to\infty} n^a\sin\frac{1}{n^b}=
\begin{cases}
\infty & \text{if $a1 & \text{if a=b}\\
0 & \text{if a>b}
\end{cases}
$$
No comments:
Post a Comment