Tuesday, 10 May 2016

calculus - limntoinftyanbn=? given that limntoinftyan=0 and limntoinftybn=infty



A. lim given that \lim_{n\to\infty}a_n=0 and \lim_{n\to\infty}b_n=\infty

B. \lim_{n\to\infty}{a_n \over b_n}=? given that \lim_{n\to\infty}a_n=0 and \lim_{n\to\infty}b_n=0

C. \lim_{n\to\infty}{a_n \over b_n}=? given that \lim_{n\to\infty}a_n=\infty and \lim_{n\to\infty}b_n= \infty




These seem to be difficult situations I come across when I have to evaluate limits.



Some examples,




  1. \lim_{n\to\infty}n^a\sin(1/n^b) with a,b>1

  2. \lim_{n\to\infty}{n^a\over \sin(1/n^b)} with a,b>1

  3. \lim_{n\to\infty}{1/n^a\over \sin(1/n^b)} with a,b>1

  4. \lim_{n\to\infty} nf(x_n) [where we only know that \lim \ f(x_n) = 0]




My first question is : Are the two situations A and B equivalent ? I feel that they are equivalent as \lim_{n\to\infty}b_n=\infty \iff \lim_{n\to\infty}{1\over b_n}=0, The problem is that I'm not sure if we can apply the product rule for limits to take the limit inside.



My second question is : What are some ways to solve such problems ? I only know that we can apply stolz- cesaro in some cases.


Answer



These are usually called indeterminate forms, not because we can't compute the limit, but because no general theorem exists.



Just to make a couple of easy examples for your fourth question.




Consider b_n=\frac{1}{n}. Then
\lim_{n\to\infty} b_n=0
and
\lim_{n\to\infty} nb_n=\lim_{n\to\infty}n\frac{1}{n}=1
If we take instead c_n=\frac{1}{n^2} we have
\lim_{n\to\infty} c_n=0,\qquad \lim_{n\to\infty} nc_n=\lim_{n\to\infty}\frac{1}{n}=0
With d_n=\frac{1}{\sqrt{n}} we have
\lim_{n\to\infty} d_n=0,\qquad \lim_{n\to\infty} nd_n=\lim_{n\to\infty}\sqrt{n}=\infty



So no general rule can be given.




You may want to check that
$$
\lim_{n\to\infty} n^a\sin\frac{1}{n^b}=
\begin{cases}
\infty & \text{if $a1 & \text{if a=b}\\
0 & \text{if a>b}
\end{cases}
$$



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...