I am trying to calculate the determinant of the following matrix by performing Gaussian elimination. I know that the determinant is $1$ but I get the wrong result.
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
2 & 3 & -4
\end{bmatrix}
$r_2-r_1$ gives:
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & -1 \\
2 & 3 & -4
\end{bmatrix}
$r_3-2r_1$ gives:
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & 1 & -6
\end{bmatrix}
Swap $r_2$ and $r_3$
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & -6 \\
0 & 0 & -1
\end{bmatrix}
Determinant$= 1.1.(-1) = -1$ which is wrong.
Answer
As you swap rows $r_2$ and $r_3$, you introduce a negative one in the determinant, hence the determinent is $-(-1)=1$.
No comments:
Post a Comment