Sunday, 8 May 2016

matrices - Determinant of $ 3times 3$ matrix by using gauss



I am trying to calculate the determinant of the following matrix by performing Gaussian elimination. I know that the determinant is $1$ but I get the wrong result.



\begin{bmatrix}
1 & 1 & 1 \\

1 & 1 & 0 \\
2 & 3 & -4
\end{bmatrix}



$r_2-r_1$ gives:



\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & -1 \\
2 & 3 & -4

\end{bmatrix}



$r_3-2r_1$ gives:



\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & 1 & -6
\end{bmatrix}




Swap $r_2$ and $r_3$



\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & -6 \\
0 & 0 & -1
\end{bmatrix}



Determinant$= 1.1.(-1) = -1$ which is wrong.


Answer




As you swap rows $r_2$ and $r_3$, you introduce a negative one in the determinant, hence the determinent is $-(-1)=1$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...