Tuesday, 10 May 2016

real analysis - How to derive the following identity?



The book Irresistible Integrals by George Boros and Victor Moll on page 204 has the following identity



$\displaystyle \frac{1}{1+x}=\prod_{k=1}^{\infty}\left(\frac{k+x+1}{k+x} \times \frac{k}{k+1}\right)$



How does one derive this?




Thanks.


Answer



Multiply out



$$\prod_{k=1}^N\left(\frac{k+x+1}{k+x} \times \frac{k}{k+1}\right)$$



and cancel like terms. You will be left with



$$\frac{1}{1+x}\left(\frac{N+x+1}{N+1}\right) .$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...