Saturday, 3 December 2016

calculus - Evaluating this integral for any integer $n>1$ : $int limits _0^ {infty} ln^nfrac{|1-x|}{|1+x|}dx$

How do I evaluate this integral for any integer $n>1$



$$\int \limits _0^ {\infty} \ln^n\frac{|1-x|}{|1+x|}\,dx$$



Note: for $n=1$ just we use integral by part and the integral will be divergent .My problem what about $n >1$



Thank you for any kind of help

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...