Saturday, 3 December 2016

real analysis - Use L'Hopital's rule to show that $lim_{x rightarrow+infty} frac{f(x)}{g(x)}= ell$

Let $f : \mathbb{R} \rightarrow \mathbb{R}$, $g : \mathbb{R} \rightarrow \mathbb{R}$, be both differentiable. Suppose that $\lim_{x \rightarrow + \infty} f(x) = \lim_{x \rightarrow + \infty} g(x) = 0$, that $g'(x) ≠ 0$ for all $x \in \mathbb{R}$ and $\lim_{x \rightarrow +\infty} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R}$. Show that




$$\lim_{x \rightarrow+\infty} \frac{f(x)}{g(x)}= \ell$$



I'm immediately thinking L'Hopital's rule, and investigating when x tends to an element of $\mathbb{R}$. I just learnt this however, how would I go forth to use this (assuming I do actually need to use L'Hopital's rule)?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...