Monday, 3 July 2017

arithmetic - $2+2 = 5$? error in proof

$$\begin{align} 2+2 &= 4 - \frac92 +\frac92\\

&= \sqrt{\left(4-\frac92\right)^2} +\frac92\\
&= \sqrt{16 -2\times4\times\frac92 +\left(\frac92\right)^2} + \frac92\\
&= \sqrt{16 -36 + \left(\frac92\right)^2} +\frac92\\
&= \sqrt {-20 +\left(\frac92\right)^2} + \frac92\\
&= \sqrt{25-45 +\left(\frac92\right)^2} +\frac92\\
&= \sqrt {5^2 -2\times5\times\frac92 + \left(\frac92\right) ^2} + \frac92\\
&= \sqrt {\left(5-\frac92\right)^2} +\frac92\\
&= 5 + \frac92 - \frac92 \\
&= 5\end{align}$$




Where did I go wrong

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...