Tuesday, 4 July 2017

linear algebra - Are singular matrices diagonalizable?




Let $A_{n\times n}$ be Hermitian with eigenvalues $\lambda_1 > \lambda_2 > \ldots > \lambda_r=0$ and multiplicities $q_1,...,qr$. Can $A$ be diagonalized? Is the matrix of eigenvalues



$$L_{n\times n}=\text{diag}(\lambda_1,\ldots,\lambda_1,\lambda_2,\ldots,\lambda_{r-1},\lambda_r,\ldots,\lambda_r)$$



a similar matrix to $A$?


Answer



Every Hermitian matrix is diagonalizable by the spectral theorem, with its eigenvalues along the diagonal, so the answer to both of your questions is `yes'.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...