$$\begin{align}&e^{\pi i} + 1 = 0 &\text{ (Euler's Formula)}\\
\implies &e^{\pi i} = -1&\\
\implies &e^{2\pi i} = 1& \text{ (Squaring both sides)}\\
\implies &e^{2\pi i} = e^0 (e^0 = 1)&\\
\implies &2\pi i = 0&\end{align}$$
how is this possible?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment