Monday 22 April 2013

abstract algebra - Homework: Sum of the cubed roots of polynomial




Given $7X^4-14X^3-7X+2 = f\in R[X]$, find the sum of the cubed roots.
Let $x_1, x_2, x_3, x_4\in R$ be the roots. Then the polynomial $X^4-2X^3-X+ 2/7$ would have the same roots. If we write the polynomial as $X^4 + a_1X^3 + a_2X^2 +a_3X + a_4$ then per Viete's theorem:



$a_k = (-1)^k\sigma _k(x_1,x_2,x_3,x_4), k\in \{1,2,3,4\}$, where $\sigma _k$ is the $k$-th elementary symmetrical polynomial. Therefore:



$x_1+x_2+x_3+x_4 = 2$
$x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4 = 0\ (*)$
$x_1x_2x_3 +x_1x_2x_4+x_1x_3x_4+x_2x_3x_4 = 1$
$x_1x_2x_3x_4 = 2/7$



Now how to determine the sum of the cubed roots?
$2^3 = 8= (x_1+x_2+x_3+x_4)(x_1+x_2+x_3+x_4)^2 = (x_1+x_2+x_3+x_4)(x_1^2+x_2^2+x_3^2+x_4^2 + 2(*))$



Here's where things go out of hand:
$(x_1+x_2+x_3+x_4)(x_1^2+x_2^2+x_3^2+x_4^2) = (x_1^3 + x_2^3 + x_3^3+x_4^3) + x_1^2(x_2+x_3+x_4)+x_2^2(x_1+x_3+x_4)+x_3^2(x_1+x_2+x_4)+x_4^2(x_1+x_2+x_3) = 8$
What should I do here?



Answer



Let
$$A=x_1+x_2+x_3+x_4=2$$
$$B=x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4=0$$
$$C=x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=1$$
$$D=x_1x_2x_3x_4=\frac 27.$$
$$E=x_1^2x_2+x_1x_2^2+x_1^2x_3+x_1x_3^2+x_1^2x_4+x_1x_4^2+x_2^2x_3+x_2x_3^2+x_2^2x_4+x_2x_4^2+x_3^2x_4+x_3x_4^2$$



We have
$$A^3=x_1^3+x_2^3+x_3^3+x_4^3+3E+6C$$

and
$$AB=E+3C.$$



So,
$$x_1^3+x_2^3+x_3^3+x_4^3=A^3-3(AB-3C)-6C=\color{red}{11}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...