Saturday, 27 April 2013

summation - Induction proof concerning a sum of binomial coefficients: $sum_{j=m}^nbinom{j}{m}=binom{n+1}{m+1}$

I'm looking for a proof of this identity but where j=m not j=0




http://www.proofwiki.org/wiki/Sum_of_Binomial_Coefficients_over_Upper_Index



$$\sum_{j=m}^n\binom{j}{m}=\binom{n+1}{m+1}$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...