Thursday, 25 April 2013

convergence divergence - Examples where series converges but product diverges and vice versa

Our professor gives us the following ungraded exercise for our analytic number theory class:




Let $ E $ be a set with one element. Suppose $ (b_n) $ is a sequence with $ |b_n| \leq \lambda < 1 $, and let $ a_n = 1 + b_n $.



1) Find $ (b_n) $ so that $ \sum b_n $ converges, but $ \prod a_n $ diverges.



2) Find $ (b_n) $ so that $ \prod a_n $ converges, but $ \sum b_n $ diverges.



I am not sure how to do this problem. Any help is appreciated.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...