Friday, 19 April 2013

real analysis - Function Satisfying $f(x)=f(2x+1)$



If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and satisfies $f(x)=f(2x+1)$, then its not to hard to show that $f$ is a constant.




My question is suppose $f$ is continuous and it satisfies $f(x)=f(2x+1)$, then can the domain of $f$ be restricted so that $f$ doesn't remain a constant. If yes, then give an example of such a function.


Answer



Let $f$ have value $1$ on $[0,\infty)$ and value $0$ on $(-\infty,-1]$. This function is not constant (although it is locally constant), and satisfies $f(x)=f(2x+1)$ whenever $x$ is in its domain.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...