Thursday, 11 April 2013

calculus - How do I calculate/prove limits for exponential functions: $limlimits_{n rightarrow infty}{frac {2^{n+1}+3^{n+1}}{2^n + 3^n}} = 3$



How do I formally prove that $\lim\limits_{n \rightarrow \infty}{\frac {2^{n+1}+3^{n+1}}{2^n + 3^n}} = 3$. I calculated a few results so I am quite sure that the limit is $3$, but I'm struggling on how to do calculate/proof that correctly.


Answer



$$=\frac{2(\frac{2}{3})^n+3}{(\frac{2}{3})^n+1}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...