Thursday, 25 April 2013

Alternate complex binomial series sum




Calculation of $\displaystyle \sum^{2n-1}_{r=1}(-1)^{r-1}\cdot r\cdot \frac{1}{\binom{2n}{r}}$ is




My Try: Using $$\int^{1}_{0}x^m(1-x)^ndx = \frac{1}{(m+n+1)}\cdot \frac{1}{\binom{m+n}{n}}$$



So $\displaystyle \int^{1}x^{2n-r}(1-x)^r=\frac{1}{2n}\cdot \frac{1}{\binom{2n}{r}}$




Sum convert into $\displaystyle 2n\sum^{2n-1}_{r=1}(-1)^{r-1}r\int^{1}_{0}x^{2n-r}(1-x)^rdx$



$\displaystyle \Longrightarrow 2n \int^{1}_{0}x^{2n}\sum^{2n-1}_{r=1}(-1)^{r-1}\cdot r \cdot \bigg(1-\frac{1}{x}\bigg)^rdx$



Could some help me to solve it , Thanks


Answer



Here is a more elementary method to find the sum which gives a more general result. Let $\displaystyle f(n)=\sum^{n-1}_{r=1}(-1)^{r-1}\frac{r}{\binom{n}{r}}$. We have been asked to find $\displaystyle f(2n)$. Note that $\displaystyle \frac{1}{\binom{n+1}{k+1}}+\frac{1}{\binom{n+1}{k}}=\frac{n+2}{n+1}\frac{1}{\binom{n}{k}}$. We will use this identity twice to telescope the sum.



$$f(n)=\sum^{n-1}_{r=0}(-1)^{r-1}\frac{r}{\binom{n}{r}}=\frac{n+1}{n+2}\sum^{n-1}_{r=0}\bigg((-1)^{r-1}\frac{r}{\binom{n+1}{r}}-(-1)^{r}\frac{r}{\binom{n+1}{r+1}}\bigg)$$$$=\frac{n+1}{n+2}\sum^{n-1}_{r=0}\bigg((-1)^{r-1}\frac{r}{\binom{n+1}{r}}-(-1)^{r}\frac{r+1}{\binom{n+1}{r+1}}+\frac{(-1)^r}{\binom{n+1}{r+1}}\bigg)=\frac{n+1}{n+2}\bigg((-1)^n\frac{n}{n+1}+\sum^{n}_{r=1}\frac{(-1)^{r-1}}{\binom{n+1}{r}}\bigg)$$$$=\frac{n+1}{n+2}\Bigg((-1)^n\frac{n}{n+1}+\frac{n+2}{n+3}\sum^{n}_{r=1}\bigg(\frac{(-1)^{r-1}}{\binom{n+2}{r}}-\frac{(-1)^r}{\binom{n+2}{r+1}}\bigg)\Bigg)=\frac{n+1}{n+2}\Bigg((-1)^n\frac{n}{n+1}+\frac{1-(-1)^n}{n+3}\Bigg)$$




$$\implies f(n)=\frac{n}{n+2}(-1)^n+\frac{n+1}{(n+2)(n+3)}\big(1-(-1)^n\big)=\left \{
\begin{aligned}
&\ \ \ \ \ \frac{n}{n+2}, && \text{if}\ n \text{ is even} \\
&-\frac{n-1}{n+3}, && \text{if } n \text{ is odd}
\end{aligned} \right.$$

$$\therefore f(2k+1)=-\frac{k}{k+2}\text{ and }f(2k)=\frac{k}{k+1}\text{, as desired.}$$
$\blacksquare$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...