Monday, 22 April 2013

calculus - Limit limnrightarrowinfty(An1+...Ank)1/n=maxA1,...,Ak




I have the following question. I was asked to compute the following limit: Let A1...Ak be positive numbers, does exist:




lim
My work:
W.L.O.G let A_1= \max{ A_1, ..., A_k}, so I have
A_1^n \leq A_1^n + ... A_k^n \leq kA_1^n
so that



A_1 = \lim_{n \rightarrow \infty} (A_1^n)^{1/n} \leq \lim_{n \rightarrow \infty}(A_1^n + ... A_k^n)^{1/n} \leq \lim_{n \rightarrow \infty} (kA_1^n)^{1/n} = kA_1



Can I do something else to sandwich the limit?



Answer



You have made a little mistake. Correction:
A_1 = \lim_{n \rightarrow \infty} (A_1^n)^{1/n} \leq \lim_{n \rightarrow \infty}(A_1^n + ... A_k^n)^{1/n} \leq \lim_{n \rightarrow \infty} (kA_1^n)^{1/n} = \lim_{n \rightarrow \infty} A_1{\color{blue}{k^{1/n}}}=A_1


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...