Monday, 22 April 2013

calculus - Limit $lim_{n rightarrow infty} (A_1^n + ... A_k^n)^{1/n}= max{ A_1, ..., A_k}$




I have the following question. I was asked to compute the following limit: Let $A_1 ... A_k$ be positive numbers, does exist:




$$ \lim_{n \rightarrow \infty} (A_1^n + ... A_k^n)^{1/n} $$
My work:
W.L.O.G let $A_1= \max{ A_1, ..., A_k}$, so I have
$$ A_1^n \leq A_1^n + ... A_k^n \leq kA_1^n $$
so that



$$ A_1 = \lim_{n \rightarrow \infty} (A_1^n)^{1/n} \leq \lim_{n \rightarrow \infty}(A_1^n + ... A_k^n)^{1/n} \leq \lim_{n \rightarrow \infty} (kA_1^n)^{1/n} = kA_1 $$



Can I do something else to sandwich the limit?



Answer



You have made a little mistake. Correction:
$$ A_1 = \lim_{n \rightarrow \infty} (A_1^n)^{1/n} \leq \lim_{n \rightarrow \infty}(A_1^n + ... A_k^n)^{1/n} \leq \lim_{n \rightarrow \infty} (kA_1^n)^{1/n} = \lim_{n \rightarrow \infty} A_1{\color{blue}{k^{1/n}}}=A_1 $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...