Problem :
Evaluate $$\lim_{n\to\infty} \left( \frac{1}{n!}\right)^\frac{1}{n \ln n}$$
My Attempts:
Suppose
\begin{align}
&L=\lim_{n\to\infty} \left( \frac{1}{n!}\right)^\frac{1}{n \ln n}\\
&\ln L=\lim_{n\to\infty}\frac{1}{n\ln n} \ln \left(\frac{1}{n!} \right) \\
& =-\lim_{n\to\infty}\frac{\ln n!}{n\ln n}\\
& =-\lim_{n\to\infty}\frac{\ln n + \ln(n-1) + \cdots+\ln1}{n\ln n} \\
& = 0 \\
&\Leftrightarrow L=1
\end{align}
But the answer is not. Where am I wrong?
And how can I solve this without using stirling approximation?
Answer
You can use Riemann integral to handle the limit. In fact,
\begin{eqnarray}
\frac{\ln(n!)}{n\ln n}&=&\frac{\sum_{k=1}^n\ln k}{n\ln n}=1+\frac1{\ln n} \sum_{k=1}^n\frac1n\ln(\frac{k}{n}).
\end{eqnarray}
Since
$$ \lim_{n\to\infty}\frac1{\ln n}=0,\lim_{n\to\infty}\sum_{k=1}^n\frac1n\ln(\frac{k}{n})=\int_0^1\ln x dx=-1 $$
one has
\begin{eqnarray}
\lim_{n\to\infty}\frac{\ln(n!)}{n\ln n}=\lim_{n\to\infty}\bigg[1+\frac1{\ln n} \sum_{k=1}^n\frac1n\ln(\frac{k}{n})\bigg]=1.
\end{eqnarray}
No comments:
Post a Comment