Saturday 20 April 2013

calculus - Evaluate $lim (n!)^{-1/n ln n}$




Problem :



Evaluate $$\lim_{n\to\infty} \left( \frac{1}{n!}\right)^\frac{1}{n \ln n}$$






My Attempts:



Suppose
\begin{align}

&L=\lim_{n\to\infty} \left( \frac{1}{n!}\right)^\frac{1}{n \ln n}\\
&\ln L=\lim_{n\to\infty}\frac{1}{n\ln n} \ln \left(\frac{1}{n!} \right) \\
& =-\lim_{n\to\infty}\frac{\ln n!}{n\ln n}\\
& =-\lim_{n\to\infty}\frac{\ln n + \ln(n-1) + \cdots+\ln1}{n\ln n} \\
& = 0 \\
&\Leftrightarrow L=1
\end{align}







But the answer is not. Where am I wrong?
And how can I solve this without using stirling approximation?


Answer



You can use Riemann integral to handle the limit. In fact,
\begin{eqnarray}
\frac{\ln(n!)}{n\ln n}&=&\frac{\sum_{k=1}^n\ln k}{n\ln n}=1+\frac1{\ln n} \sum_{k=1}^n\frac1n\ln(\frac{k}{n}).
\end{eqnarray}

Since
$$ \lim_{n\to\infty}\frac1{\ln n}=0,\lim_{n\to\infty}\sum_{k=1}^n\frac1n\ln(\frac{k}{n})=\int_0^1\ln x dx=-1 $$
one has

\begin{eqnarray}
\lim_{n\to\infty}\frac{\ln(n!)}{n\ln n}=\lim_{n\to\infty}\bigg[1+\frac1{\ln n} \sum_{k=1}^n\frac1n\ln(\frac{k}{n})\bigg]=1.
\end{eqnarray}


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...