Thursday, 11 April 2013

probability - Show $mathbb{E}(X) = int_0^{infty} (1-F_X(x)) , dx$ for a continuous random variable $X geq 0$

If $X$ is a continuous random variable with density $f_X$ and taking non-negative values only, how do I show that $$\mathbb{E}(X)=\int_0^{\infty}[1-F_X(x)]dx$$ whenever this integral exists?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...