Friday 26 April 2013

calculus - To show that $f (x) = | cos x | + |sin x |$ is not one one and onto and not differentiable




Let $f : \mathbb{R} \longrightarrow [0,2]$ be defined by $f (x) = | \cos x | + |\sin x |$. I need to show that $f$ is not one one and onto. I have only intuitive idea that $\cos x$ is even function so image of $x$ and $-x$ are same. Not one to one , but how do I properly check for other things. Hints ? Thanks


Answer



(i) $f(0) = f(2\pi) = f(4\pi) = \cdots \Rightarrow$ not one to one.



(ii) Can we find $x \in \mathbb{R}$ so that $f(x) = 0 \in \operatorname{codom}f$, i.e. does $\left| \cos x \right| + \left| \sin x \right| =0$ have any real solutions?



(iii) Does $ f'(0) =\displaystyle \lim_{x \to 0} \dfrac{|\cos x| + |\sin x| - |\cos 0|-|\sin 0|}{x-0}=\lim_{x \to 0} \dfrac{|\cos x| + |\sin x| - 1}{x}$ exist?



Edit:




We have



$$
\lim_{x \to 0^-} \dfrac{|\cos x| + |\sin x| - 1}{x}
= \lim_{x \to 0^-} \dfrac{\cos x - \sin x - 1}{x}
\stackrel{\mathcal{L}}{=} \lim_{x \to 0^-} -\sin x - \cos\ x
= -1.
$$




But,



$$
\lim_{x \to 0^+} \dfrac{|\cos x| + |\sin x| - 1}{x}
= \lim_{x \to 0^+} \dfrac{\cos x + \sin x - 1}{x}
\stackrel{\mathcal{L}}{=} \lim_{x \to 0^+} -\sin x + \cos\ x
= 1.
$$



Therefore,




$$
\lim_{x \to 0} \dfrac{|\cos x| + |\sin x| - |\cos 0|-|\sin 0|}{x-0}
$$



does not exist. Hence, $f$ is not differentiable on its entire domain.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...