Sunday, 14 April 2013

elementary number theory - If $a $ divides $b$, then $(2^a-1) $ divides $(2^b-1)$


Prove that if $a \mid b$, then $(2^a-1) \mid(2^b-1)$.




So, I've said the following:




  1. Let $a \mid b$.


  2. $ \implies b=am$

  3. Assume $(2^a-1) \mid (2^b-1)$

  4. $ \implies (2^b-1)=(2^a-1)x$



But I can't figure out what to do with any of this from here forward.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...