Thursday, 25 April 2013

calculus - Find $limlimits_{ntoinfty}left(frac{a_1}{a_0S_1}+frac{a_2}{S_1S_2}+...+frac{a_n}{S_{n-1}S_n}right)$

Find $\lim\limits_{x\to\infty}\left(\frac{a_1}{a_0S_1}+\frac{a_2}{S_1S_2}+...+\frac{a_n}{S_{n-1}S_n}\right)$ where $n=0,1,2,...$ and $a_n=2015^n,S_n=\sum\limits_{k=0}^{n}a_k$



$S_n$ can be written as the geometric sum $S_n=\frac{2015^{n+1}-1}{2014}$.




Applying the values for $a_k$ and $S_k$ can't give a closed form in the limit.



How to transform sequence in the limit so it gives closed form (if possible)?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...