Friday, 26 April 2013

integration - Finding indefinite integral by partial fractions



dxx(x41)



Can this integral be calculated using the Partial Fractions method.


Answer



HINT:



We need to use Partial Fraction Decomposition




Method 1:



As x41=(x21)(x2+1)=(x1)(x+1)(x2+1),



Put 1x(x41)=Ax+Bx1+Cx+1+Dx+Ex2+1






Method 2:

I=1x(x41)dx=xdxx2(x41)



Putting x2=y,2xdx=dy,



I=12dyy(y21)



 Now, put 1y(y21)=Ay+By1+Cy+1







Method 3:



I=1x(x41)dx=x3dxx4(x41)



Putting x4=z,4x3dx=dz,



I=14dzz(z1)



 Now, put 1z(z1)=Az+Bz1




 or by observation, 1z(z1)=z(z1)z(z1)=1z11z



Observe that the last method is susceptible to generalization.



J=dxx(xna)=xn1dxxn(xna)



Putting xn=u,nxn1dx=du,



J=1nduu(ua)
 and 1u(ua)=1au(ua)u(ua)=1a(1ua1u)



No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...