Friday, 16 August 2013

calculus - Finding $int_{-infty}^infty frac{x^2}{x^4+1};dx$

$$\int_{-\infty}^\infty \frac{x^2}{x^4+1}\;dx$$




I'm trying to understand trigonometric substitution better, because I never could get a good handle on it. All I know is that this integral is supposed to reduce to the integral of some power of cosine. I tried $x^2=\tan\theta$, but I ended up with $\sin\theta\cos^3\theta$ as my integrand. Can someone explain how to compute this?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...