Monday 12 August 2013

elementary number theory - Let $amid c$ and $bmid c$ such that $gcd(a,b)=1$, Show that $abmid c$




Let $a\mid c$ and $b\mid c$ such that greatest common divisor (gcd) $\gcd(a,b)=1$, Show that $ab\mid c$.


Answer



HINT $\rm\quad\ \ a,b\ |\ c\ \Rightarrow\ ab\ |\ ac,bc\ \Rightarrow\ ab\ |\ (ac,bc) = (a,b)\:c = c\ $ via $\rm\:(a,b)= 1\:.$



NOTE $\ $ This proof works in every domain where GCDs exist, since it doesn't use Bezout's identity. Instead it uses the GCD distributive law $\rm\ (ac,bc) = (a,b)\:c\:,\ $ true in every GCD domain, viz.



LEMMA $\rm\quad (a,b)\ =\ (ac,bc)/c\ \ $ if $\rm\ (ac,bc)\ $ exists.



Proof $\rm\quad\ d\ |\ a,b\ \iff\ dc\ |\ ac,bc\ \iff\ dc\ |\ (ac,bc)\ \iff\ d\ |\ (ac,bc)/c$




The above proofs use the universal definitions of GCD, LCM, which often serve to simplify proofs, e.g. see this proof of the GCD * LCM law.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...